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GSHPA -Thermal Pile Standard overview
 Contents List 

- Sec 1 Preamble (as in the Vertical Borehole Standard)
- Sec 2 Regulations and governments (as VBS)
- Sec 3 Contractual setup
- Sec 4 Training requirements (Link with FPS for piles)
- Sec 5 Design 
- Sec 6 Thermal response
- Sec 7 Pile materials and methods
- Sec 8 Pipe Jointing (as VBS)
- Sec 9 Thermal pile concrete
- Sec 10 Loops installation
- Sec 11 Pressure testing
- Sec 12 Indoor piping /values (as VBS) – Header pipes
- Sec 13 Thermal Transfer fluids (as VBS) – High loop temps – use water as Europe?
- Sec 14 Design drawings
- Sec 15 Monitoring and checking 
- Sec 16 Alterations 
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 Appendices
- A Design – Geotechnical design issues
- B Thermal response – Effect of large diameter piles
- C Thermal pile concrete – Concrete thermal conductivity 
- E Loops Installation – Methods and scratching
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Section 3 Contractual responsibilities

 Many parties results in 
division of responsibilities.

 ICE Specification for Piling 
and Embedded Retaining 
Walls (SPERW) is the 
starting point
- “Engineer” design
- “Contractor” design
- Standardise terms
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Contractual responsibilities
 “Engineer” design piles

Pile Construction, Trimming & 
Groundworks 

(RIBA Work Stage J onwards)

Employer

M&E 
Designer

Main ContractorEngineer 
(Pile Designer)

GSHP 
Designer

GSHP 
Contractor

Piling 
Contractor

Groundworks 
Contractor

M&E 
Contractor

Concept Design, Design 
Development, Tender

(RIBA Work Stage A-H)

Denotes parties with responsibilities set out in SPERW (2007)

Contractual links

Possible non-contractual links 
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Employer

M&E   
Designer Main ContractorEngineer

GSHP 
Designer

Concept Design, Design 
Development, Tender

(RIBA Work Stage A-D)

GSHP  
Contractor 

(GSHP 
Designer)

Piling 
Contractor 

(Pile 
Designer)

Groundworks 
Contractor

M&E 
Contractor

Technical Design, Pile Construction, 
Trimming & Groundworks 

(RIBA Work Stage E onwards)

Denotes parties with responsibilities set out in SPERW (2007)

Contractual links

Possible non-contractual links 

Contractual responsibilities
 “Contractor” design piles
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Section 5  Design requirements 
 Thermal effects complicate traditional pile design

Factor of Safety (e.g. 
LDSA Guidance Notes)

Constraints
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Section 5 Geotechnical Pile design – heating pile

c1, 1'

c2, '

c3, '

 

Ground  uplift?

Pile expansion/ contraction  T = 30°C 

Thermal Properties:
- Soils 
- Concrete

Shaft friction effects:
- Freezing?
- Shear stress?
- Radial stresses?
- Cyclic loads?
- W/C change?

Concrete Stress
• Stress 
concentrations
next to pipes?

Building Load – effect on pile F of S?

• Daily fluctuations
• Seasonal fluctuations
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Geothermal Pile – Geotechnical Design Process
1. Pile design for structural loads 

- Normal F of S > 2.0 to 3.0  – (ULS Design)
- Consider normally consolidated clays as –ve skin friction.

2. Agree temperature range with GSHP Designer
- Interface must not freeze. - Pile/Soil interface eg +2 to +30oC.
- Number of thermal piles – free head / Fixed head

3. Assess pile expansion and ground movements (Undrained)
- Free head and fixed head  (SLS design)

4. Assess concrete stresses – dead load and thermal
- Max concrete stress < Concrete strength  (qc)/4

5. Consolidation  / Quasi – thermal creep effect
- Check settlement 

6. Check live loads and thermal cyclic effects 
- Treat thermal loads as cyclic live loads  - 50 annual cycles
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Combined load and thermal test
- Lambeth College, London (2007)
Bourne-Webb et al, (2009)  Geotechnique 

 Cementation / GIL / Cambridge 
 Pile loading test undertaken incorporating cyclic 

temperature effects
 Optical fibre sensor (OFS) system 
 Conventional vibrating-wire strain gauges (VWSG), 

thermistors and external load control elements
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Lambeth College  - Geotechnical Assessments 

 Rapid (Undrained0 response –
- Expansion of pile - Lambeth College  

 Long term (Drained) response –
- Dissipation of pore pressure 

 Quasi Creep effect 
- Reduction in Preconsolidation pressure with increased temp. 

 Cyclic thermal loading
- Annual thermal cycle
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Lambeth College 
Pile Test
 Layout and 

Instrumentation
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 Design load -1mm 
settlement

 Cooling – 3mm change

 Heating – 2mm change

 Little heave during 
heating

Pile Temp and head 
movement 
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Lambeth College  Modelling using DYNA and 
OASYS PILE 

 Both external load and heating/cooling cycle applied 
to pile

 LS-DYNA and Oasys PILE 
used to model behaviour

Pile Head Load 
(Free head)

Fequiv

Fequiv

Fequiv =  therm
.Econcrete

.Apile

Limiting shear
τ= α.Cu

Vertical settlement
(Mindlin)

Thermal expansion
of piles
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Lambeth College – Pile Loads
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Lambeth College – Modelling pore pressures
(In progress)
 LS-Dyna calculates excess pore pressures due to:-

- Undrained pile loading 1200kN
- Thermal effects

 Dissipation of water pressures allows consolidation
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Section 5 - GSHP Design of thermal piles

 Fleur Loveridge has addressed issues

 Pile Modelling Assumes 
- line source – piles up to 0.3m – Use standard packages 
- Uniform temperature source – larger piles – Use Pile Sim or Orphius
- Finite element models 

 Number of loops in pile

 Low thermal conductivity concrete – similar to soil

 High thermal conductivity concrete – reduces thermal 
resistance 
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Lab Testing  – pore pressures

 Difference in soil/porewater thermal expansion 
generates excess pore pressures on heating

 Discussed in literature:
- Campanella & Mitchell (1968)
- Hueckel, Francois and Laloui (2009)

ݑ߂ ൌ
݊ ܶ߂ ሺݏߙ െ ሻݓߙ ൅ ݐݏߙ ܶ߂	

ݒ݉
 

αs = thermal expansion of 
mineral solids

αw = thermal expansion 
of soil water

αst = physico-chemical 
structural volume change

mv = soil compressibility(Campanella & Mitchell, 1968)
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Thermal-creep effect on preconsolidation
 Heating reduces preconsolidation pressure (σp’) and stiffness

 Creep ignored in OC clays  NOT in NC clays. 

(Boudali, Leroueil & Srinivasa Murthy, 1994)
(Eriksson, 1989)

London Clay is very 
over-consolidated.

σp’ reducing
with higher 
Temp.

NC Clay 
Creep 
settlement
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Cyclic loading

 Cyclic thermal load 
caused by heating and 
cooling pile 
- Pu = 3.6MN
- Po = 1.2MN
- Pc = 0.7MN

- Pc/Pu = 0.7/3.6 = 0.2 
- Po/Pu = 1.2/3.6 = 0.33

Poulos Stability Diagram 
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Section 6 – Response Tests for thermal piles

 How Long should the test take?

 Consider Loops on Centreline or round perimeter

 Thermal conductivity of concrete relative to soil

 Temperature at soil concrete interface

 Response test – shallow depth  
- Part of Geotechnical Investigation
- Part of pile test eg reaction pile

 Combine with strain gauges mid depth – thermal stress in piles
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Section 7 Pipe Materials
 Plastic pipes  - Bend Radius - PEX at 20oC

- 15/??mm -- ??m pile Can a 15mm PEX pipe fit in a 0.45m pile?

- 20/1.9 mm - 0.6m pile (20cm)

- 25/2.3mm - 0.75m pile. (25cm)

- 32/2.9mm - 0.90m pile (32cm)

- 40/3.7mm - 1.0m pile cage (40cm)

 PE100 or PE100+ at 20oC 
- 15/??mm -- ??m pile 

- 20/1.9 mm – 1.0m pile (40cm)

- 25/2.3mm - 1.2m pile. (50cm)

- 32/2.9mm - 2.2m pile (100cm)

- 40/3.7mm - N/A 

- PEX bends to about half the radius of PE100 or PE100+.

- Colder temperatures increase min bend radius

- PEX is more expensive but does not need U bends at the top and bottom of loops.
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Section 10  Loop Installation 

 Loops on long cages – Long tremie pipe
- Inside cage 
- Outside cage

 Loops on short cages – Short Tremie
-
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Section 10  Borehole Loops 
installation

 Historically – Europe
- Long cages 
- Internal pipes with looped pipes

 In London - dry bored piles
- Use short cages
- Use borehole U-tubes

 Paddington Basin – GIL and Cementation
- Two pairs of U-tubes
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West End Green – Use of lantern spacers  (2010)

+25.5mOD

Brickearth

River Terrace 
Deposits

London Clay

+28mOD

+20mOD

A A

BB

A-A

B-B

Thermal pipes

Reinforcement bars

Lantern spacers

To central GSHP
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Short or long tremie  – Scratching test (2010)

Concrete = +3.45mOD

Pipe bottom +4.0mOD

Pile bottom -5.4mOD

Tremie length = 6m

Loops restrained by 
bar weights 

+33.2mOD

+32.4mOD

Test set-up Photos from test

Bar weights prior to testing U bend after test

Lower pipe after testUpper pipe after test
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Scratch depth measurement on 32mm pipes 
 Assessment of damage

- Par off pipe until scratch just disappears
- Measure pared width (2C)
- Calculate scratch depth

R R

CC
T 2C – chord length (mm) - measured;

T – Depth of the scratch (mm) - calculated
R – radius of the pipe – measured
Conclusions 
– Vertical pipes – <1mm scratches 

- Splayed pipes - 1 to 2mm scratches 
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CFA Piles, Cambridge (Bachy Web site)

 Pile design - Motts

 Pile Contractor – Bachy 

 Loop design / build – GIL

 CFA piles (600mm dia)                 
150 No up to 25m depth

 Loops - 4 pipes x 32mm dia

 Pushed with 1 x T32  

 Heating - 188kW

 Cooling - 117kW

Plunging used T32 bar + 4 pipes (2 loops)

Trimming Cage and header pipes
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Section 11 Pressure testing 

 Checks for loop leakage 
- During installation
- Contract interfaces

 Pressurise loops during installation
- European contractors pressurise loops during installation 
- UK does not do this?

 Relevance of pressure test in concrete
- Pipe relaxation at high pressures
- Stiff response increases test sensitivity
- Pipe pressure can increase – Pile concrete heats water -

expansion
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Section 15 Monitoring and triggers

 No freezing at Soil/Pile interface

 Little data on relationship between 
circulation fluid temp and interface 
temperature

 Adopt conservative minimum 
temperature from heat pump

 Monitor

 Use trigger values

 Under discussion

Keble College - Oxford



Central line 
tunnels –
Exisiting. 

Crossrail 
Stations 

Thermal 
piles 

Thermal 
walls

Thermal Walls –
Crossrail Dean Street Box



Crossrail - Ground temperatures at Oxford Street 
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T31R - 100.73 (mATD) T22R - 99.26 (mATD)

RT119 - 92.93 (mATD) BST15R - 86.09 (mATD)

RT120 - 89.72 (mATD) RT121C - 96.33 (mATD)

 Ground temperature at tunnel 
level  

 Next to tunnel temperature 
19oC

 Temperature drops to to ~15oC  
at about  90m from tunnel
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Diaphragm wall 
Dyna Model - Temperature effect on wall

PLAN VIEW

Soil 
Diaphragm Wall 
Concrete 

Rebars 
(pink) 

Pipe 

Soil extends to 100m from 
outer surface of concrete 

0.25m 

0.25m 

Air / 
insulation 

Soil Air / 
insulation 

Pipe 
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Temperature variation across 
diaphragm wall

Soil
(8oC)
2W/m2

Concrete 

Air in Basement
(19oC )
20W/m2

Soil D-wall 

With insulation (pipe at 6deg) 

No insulation (pipe at 6deg) 

Zero extraction 

0oC 

20oC 

Pipe
(6oC) 

Rebars

Air 

10oC

(6 months cooling) 
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Thermal 
effects on
wall
bending 
moments

(Cracked sections)

(Expansion of soil 
not considered)
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Conclusions -Thermal pile standard advances
 Contents List 

- Sec 1 Preamble (as VBS)
- Sec 2 Regulations and governments (as VBS)
- Sec 3 Contractual setup
- Sec 4 Training requirements (Link with FPS for piles)
- Sec 5 Design 
- Sec 6 Thermal response
- Sec 7 Pile materials and methods
- Sec 8 Pipe Jointing (as VBS)
- Sec 9 Thermal pile concrete
- Sec 10 Loops installation
- Sec 11 Pressure testing
- Sec 12 Indoor piping /values (as VBS) – Header pipes
- Sec 13 Thermal Transfer fluids (as VBS) – High loop temps – use water as Europe?
- Sec 14 Design drawings
- Sec 15 Monitoring and checking 
- Sec 16 Alterations 
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Thank you for your attention

 Any Questions?
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Thank you!
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Design requirements – design charts

 Design basis
- Thermal pile load test
- Computer model

 Typical temperature range 
to consider
- ±5 to 10ºC daily
- ±20ºC seasonal

 Model of varying 
length/diameter of piles 
and study effect on 
concrete stress, FOS.
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ng
th
, L

Concrete stress, 
σc

Pile diameter, D
1.2

0.75

0.60

Etc.
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Further work

 Ongoing research provided in Appendices to the 
Thermal Pile Standard
- Soil and concrete thermal conductivity
- Thermal response test interpretation for larger diameter piles
- Change in soil behaviour / shaft friction / concrete stress with 

temperature variations
- Pile / soil interface zone temperature and thermal conductivity

 Knowns and unknowns in producing the design 
guidance clearly stated

 Several further revision cycles required to finalise 
the document with the T&SC
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Conclusions
 Thermal Piles are established in UK.

 Thermal Pile / Heat pump systems - compete with gas boilers, 
biomass, CHP.

 Thermal pile installation methods developing.
- Need to check installation damage.

 Geothermal design based on borehole loops guidance.

 Geotechnical design developing. 

 Ownership of design responsibilities unclear. 

 Few designers and contractors able to tender for work.

 Thermal walls – Design processes under development
- Basement insulation, thermal stresses on wall moments, earth pressures.
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Design requirements – laboratory testing

 Thermal conductivity - concrete
- Soil, concrete and interface zone
- Eurocode or ASTM methods (eg Guarded hot plate)


