

Modelling Buildings;obtaining "accurate" energy data

Nick Kelly Energy Systems Research Unit (ESRU)Mechanical Engineering University of Strathclyde

Overview

- • Approaches obtaining energy data
- Different modelling approaches •
- • What do we mean by "accurate"?
- Detailed modelling
	- a decoupled demand "profile" approach
	- coupled building/plant modelling
- Example detailed modelling
- \bullet Is this real life? Is this just fantasy?
- •Improving realism

Demand Data Sources

- \bullet real data:
	- field trials and lab tests are a rich source of data on device and systems performance
	- both are expensive and scope is often limited
- \bullet modelling:
	- used appropriately, modelling is useful for answering "what if ?"questions
	- … and to examine performance over a diverse range of situations

Modelling Approaches

 \bullet the type of model dictates the type and 'realism' of the nerformance data we have available for design performance data we have available for design

What does accurate mean?

- • … simulation will exactly replicate exactly how the building will behave once built
- \bullet uncertainty in modelling
	- $-$ the modeller the cottwar the modeller, the software, the nodeller, the software, the physical models, parameters, simulated and actual climate, etc.
- \bullet post occupancy factors
	- defects and changes from design
	- behaviour of occupants, etc.
- •... simulation gives us a realistic indication of likely energy performance … subject to
uncertainty and valid assur uncertainty and valid assumptions as to how building will be used

Detailed Modelling

- • involves the development of a mathematical building model and its simulation of a building in a "realistic"context
- • this is the basis of most building simulation (BS) tools such as IES, ESP-r, Energy Plus
- simulation involves running the model with
site specific climate data and user defined •site-specific climate data and user-defined control constraints
- • output includes the effects of time-varying solar gains, infiltration. occupant heat gains, thermal inertia, etc.
- • the output is dynamic time series data that can be used to quantify: device efficiency, fuel consumption, energy costs, start-up times. on/off cycling, temperatures, thermal comfort, etc.

University of

Engineering

Strathclyde

Generating Design Data

- 2 approaches:
- generate time-series heat demand 'profiles' for a building – 'de-coupled modelling'
	- only need to model the building in detail
	- no interaction between load and plant
- \bullet model the operation of the heating device (i.e. heat pump) and the building together – 'coupled modelling'
	- detailed modelling of building and system
	- plant/building interactions captured
	- *far* more complex model

De-coupled Modelling

山业田 University of G **Strathclyde Engineering**

Coupled Modelling

Coupled Modelling

Case Study: Westfield

- Westfield former mining village
in West Lothian in West Lothian
- 8 dwellings were retro-fitted with ASHP systems (space heating only); ASHP feeds hydronicheating system
- all of the buildings were properly
insulated and draft stripped prior insulated and draft stripped prior to the installation of the ASHP
- hot water was provided by a
resistance beating coil within resistance heating coil within the hot water storage tank

ASHP Model Calibration

- \bullet one of the houses modelled in detail using ESP-r
- \bullet performance simulated over a year
- \bullet the project required the development of an ASHP model for ESP-r
- \bullet the model performance map was calibrated using lab test data from BRE
- \bullet the dynamics of the model were calibrated using a sub-set of the monitored data and excel
- \bullet later the model results were then compared "blind" to aggregate monitored data (90 days data)

return T - am bient T

Integrated Model

- • the ASHP device model was integrated into a larger ESP-r building and systems model featuring:
	- a representation of a typical
Westfield dwellings Westfield dwellings
	- a hot water radiator system
	- a thermostatic control system
	- a calibrated air leakage network
- the model characteristics were
determined from a site survey determined from a site survey and blower door test of one of the Westfied dwellings.

University of

Engineering

Strathclyde

University of Strathclyde Engineering

Simulations

- simulations analysed:
	- the dwelling as-is and then comparing results to field trial data
	- of the dwelling with alternative heating systems $-$
- model was run at 1-min time steps over a full year
- small time step was needed to capture the effects of coil
defrest on energy consumption (1.10 mins) defrost on energy consumption (1-10 mins)
- the simulation produced time series data including
ASHP power and thermal output, bet water temps ASHP power and thermal output, hot water temps, room temps. etc.
- the results were then used in a basic economic and
environmental study of the ASHP environmental study of the ASHP

Comparison with Field Trial

Comparison with Field Trial

- •significant divergence between monitored an simulated results above 5°C
- •NOT a simulation problem ….
- -ASHP installers forgot to activate outside air temperature compensation on device
- re-simulated with temperature compensation turned off

Comparison with Field Trial

Comparison to Alternatives

• variants of the integrated model were created for a condensing boiler (CGB) and all-electric heating systems

- \bullet only modest CO 2 $_{2}$ savings achieved in comparison to CGB system
- ASHP more expensive to run than CGB

Pros and Cons of Detailed **Modelling**

- component selection and sizing
- system configuration
- control strategy development
- used appropriately it can be used to develop more robust energy system designs

Pros and Cons of Detailed **Modelling**

- user skill level and background knowledge
- model development and debug
- data analysis
- also greater scope for error due to significantly increased data requirements

University of

Engineering

Strathclvde

Is this real life? Is this just fantasy?

- • dynamic simulation tools have been extensively validated over the last 30 years (e.g. BESTEST)
- \bullet show good agreement with analytical and closely controlled experimental cases
- • … however it is rare that validation is based on an occupied building's energy data
- \bullet post-occupancy studies (i.e. PROBE) have shown that all forms of modelling tends to produce over-optimistic results for energy use
- \bullet Westfield study compared modelling results to monitored data – rarely the case

How do we get better?

- \bullet clear need for more comparison of original predictions with post occupancy data
- \bullet embedding uncertainty in modelling – producing a value plus a range
- \bullet accounting for "known unknowns"
	- defects in fabric and systems
	- better modelling of people and their interaction with the building and its systems
- \bullet better data sources: materials, components, climat e
- \bullet continued improvement in modelling of physical processes:
	- 3D heat transfer
	- borehole/trench heat transfer
	- interior air movement

Links

- ESP-r (open source) www.<mark>esru.strath.ac.uk/software/</mark>
- IBPSA <u>www.ibpsa.org</u>
- • DoE simulation tools directory http://apps1.eere.energy.gov/buildings/tools_directory/
- • Post occupancy evaluation (PROBE) http://www.usablebuildings.co.uk/
- \bullet BESTEST www.ecbcs.org/annexes/annex43.htm