

Development and Validation of a Diaphragm Wall Heat Exchanger Model

Dr Ida Shafagh, School of Civil Engineering

FACULTY OF ENGINEERING

Ground Source Heat Pump

Pipe

UNIVERSITY OF LEEDS

Pipe Spacing

What is a Diaphragm Wall Heat Exchanger (DWHE)?

How to understand the performance of a DWHE?

Thermal Response Test (TRT): heat energy is injected at a constant rate into one end of the loop and the outflow temperature at the other end is measured.

ground and/or concrete thermal properties

How to interpret such temperature data?

A suitable heat transfer mathematical model is required:

few models have been developed for DWHE due to their complexity

FACULTY OF ENGINEERING

UNIVERSITY OF LEEDS

Objectives of the Current Research

we have used a TRT apparatus to:

Stimulate the heat exchanger and derive data for model validation

FACULTY OF ENGINEERING

Important Parameters in the Design of the DWHE

- Depth of the wall
- Width of the wall
- Depth of the basement area
- Thickness of the basement floor
- Depth of the buried heat exchanger pipe
- Pipe spacing
- Cover (space between the outer surface of the pipe and the ground)
- Heat exchanger pipe diameter

DEFINING THE BOUNDARY LAYERS

Weighing Factors required by DTN model

FACULTY OF ENGINEERING

Dynamic Thermal Networks Model (DTN)

Validation of the Model

DTN DWHE Model Parameters for the TRT Test Conditions			
Model Parameters	Value	Units	
Wall Depth	17.0	m	
Pipe Depth	15.6	m	
Basement Depth	6.5	m	
Pipe outer diameter	25	mm	
Pipe inner diameter	21	mm	
Pipe horizontal spacing	0.40	m	
Pipe circuit length	93.0	m	
Number of loops	4	-	
Pipe thermal conductivity	0.39	W m ⁻¹ K ⁻¹	
Fluid conductivity	0.625	W m ⁻¹ K ⁻¹	
Fluid specific heat	4178	J kg ⁻¹ K ⁻¹	
Fluid density	994.0	kg m⁻³	
Fluid viscosity	0.000714	Ра	

Validation of the Model

UNIVERSITY OF LEEDS

Validation of the Model

UNIVERSITY OF LEEDS

Validation of the Model

Validation of the Model

Thermal Properties of Concrete and Ground used in Model			
Thermal Properties	Value	Units	
Concrete thermal conductivity	2.25	W m ⁻¹ K ⁻¹	
Ground thermal conductivity	1.6	W m ⁻¹ K ⁻¹	
Concrete volumetric heat capacity	3.5×10 ⁶	J m ⁻³ K ⁻¹	
Ground volumetric heat capacity	1.6×10 ⁶	J m ⁻³ K ⁻¹	

UNIVERSITY OF LE

- RMSE between the calculated and measured outlet temperatures over the 6 weeks operation period is 0.4K.
- Closest agreement is found with higher values of ground and concrete thermal conductivities and relatively high value of concrete volumetric heat capacity.
- Measured heat rejection over the whole period is 999.7 kWh and this compares with a predicted value of 988.7 kWh which corresponds to a 1.10% relative error.

Thank You!