GROUNDSOURCE LIVE 2011

Guus van Gelder

GROENHOLLAND PRESENTATION FEATURES

- A 2006 large, novel and ambitous groundsource project
- The project in 2011 hindsight
- 2006 2011 parallels with the groundsource industry
- A 2020 perspective for the groundsource industry

2006 Project, Etten-Leur (NL)

- 25 hectares, new development
- 1200 individual homes
- Total 6 MW heat pump capacity
- Electric infrastructure, no gas
- Multiple main contractors
- Municipality in driving seat

THE 2006 QUESTIONS

- How to design?
- How to organise?
- How to warrant quality?
- The legal framework?
- The longterm?

The 2006 questions and answers

DESIGN?

- Define energy scenarios, spatial distribution & interference
- Trial boreholes, hydrological & geothermal (GRT) testing
- Modeling of thermal interaction, ground and groundwater effects

PROJECT ORGANISATION?

- Several main contractors, 3 main installers of heatpumps
- One separate lot of 50 houses built and installed by owners

OUALITY?

- Project specific heat pump installation guideline developed
- Installation design & quality was responsibility of installer/owner

THE LEGAL FRAMEWORK?

- No legal framework, installation guideline in building permit

THE LONGTERM?

- Adherence to guideline should warrant technical quality
- 50% thermal regeneration requirement warrants sustainability

House types energy usage & BHE design

PARAMETER	WAARDE			
Heat exchanger type	U-loop PN16 SDR 11, 32 mm diameter			
Borehole interdistance (m)	5,0			
Diameter borehole (m)	0,15			
Circulatiemedium	10% monopropyleenglycol			
	Detached	Semi- detached	Terraced	
COP heatpump	4,5	4,2	4,0	
Flow borehole heat exchanger (m³/hour)	1,15	1,14	1,05	
ΔT borehole heat exchanger °C	4,75	3,5	2,5	
Designtemperature, average mediumtemperature (at T _{bodem_in} ≥ -2,5 °C)	1,37	0,75	0,25	

Dwelling	Peak capacity (kW)	Heating (MWh)	Cooling 0% (bww m)	Cooling 50% (bww m)	Cooling 70% (bww m)
Detached	8	13,5	3 x 108 (324)	3 x 97 (291)	3 x 92 (276)
Semi- detached	6	8,49	2 x 115 (230)	2 x 98 (196)	2 x 92 (184)
Terraced	4	6,84	2 x 87 (174)	2 x 58 (116)	2 x 48 (96)

Thermal model results: Scenario terraced homes

- no thermal regeneration
 - max ∆T 20K year 5
- •70% thermal regeneration
 - max ∆T 5K year 5

Thermal model results, groundwater flow effect

Flow direction

- •50% thermal regeneration
 - temperature effect (-3, +3) year 5
- •70% thermal regeneration
 - temperature effect (-1, +1) year 5

Conclusions of 2006 design study

- Without regeneration of the ground temperature, heat pump systems on this scale and density are not feasible in the long term.
- At least 50% of the annual heating demand needs to be re-injected (at least 70% of heat extracted from ground).
- Regeneration can be achieved through summertime free cooling or the integration of solar thermal panels.
- Balanced load profile (heating & cooling) reduces sensitivity of ground temperature to variations in demand.
- A more balanced load profile reduces downstream effects (cold spots) through groundwater flow

Evaluating the project in 2011

THE UP SIDE

- The project was completed over a three year period (2006-2009)
- All individual systems are running, no major technical problems
- Major reference for closed loop system reliability and robustness

THE DOWN SIDE

- System design and quality cause for worry
- Process very much price driven, knowledge lacking
- Thermal regeneration in many cases neglected
- No feedback on efficiency, no systems monitored
- Long term temperature development is cause for worry

Groundsource industry parallel 2006 - 2011

THE UP SIDE

- Ground source is getting recognized as a standard technology
- Most installed systems are running
- Reference projects for groundsource reliability and robustness

THE DOWN SIDE

- Industry very price driven, knowledge & quality under valued
- Quality certification process mainly bureaucratic
- System design, quality and efficiency cause for worry
- Energy strategies & building installation integration lacking
- Little feedback on proven efficiency, very few systems monitored

Industry near future 2011 -2020

THE OPPERTUNITIES

- Groundsoure technology, becoming a standard low energy solution
- High potential for large scale projects, realistic & challenging
- Groundsource integration into energy efficient building strategies
- Groundsource as integral part of smart energy grids & smart cities
- Groundsource requires integration into main stream curriculum

THE THREATS

- Standard systems do not meet minimum basic quality/efficiency
- Large scale applications need environmental issues resolved
- Quality guidelines unavoidable, but should not impede
- Lowest price focus, lack of knowledge and quality, threat to industry
- Lack of efficiency and long term sustainability is threat to industry

The 2020 perspective

Homemade Ground Source Heat Pump

By Les Belzer, eHow Contributor updated March 09, 2011

You can use a geothermal heat pump to heat and cool your country house. A ground source heat pump can reduce your heating and cooling costs. You may pay a substantial amount of money in initial costs or you can design it and do some of the work yourself to save on the capital outlay.

