

Thermal Fluids for Ground Source Heat Pumps

Ensuring System Efficiency & Longevity

Dr Philip J Gray

Kilfrost Speciality Fluids Division (SFD)

Agenda

- 1. What is a Thermal Fluid?
- 2. Choosing a Thermal Fluid
- 3. Handling, Installing & Monitoring (Best Practice)

1. What is a Thermal Fluid?

- 2. Choosing a Thermal Fluid
- 3. Handling, Installing & Monitoring (Best Practice)

Requirements for ground source heat pumps

Heat Transfer

Freeze Protection

System Protection

Thermal fluids

Thermal fluids are formulated speciality products of a base fluid & inhibition technology

Base Fluid

Examples

Glycols Glycerine Methanol & Ethanol Acetates Formates

Inhibition Technology

Examples

Corrosion inhibitors Scale reducers Preservatives/Biocide Anti-oxidants pH Buffers

Thermal fluids are designed to fulfil the specific requirements of the systems they operate in

- 1. What is a Thermal Fluid
- 2. Choosing a Thermal Fluid
- 3. Handling, Installing & Monitoring (Best Practice)

Property	Consideration	Determined by
Human &		
Environmental		
impact		
Physical Hazards		

Biodegradability			
Hoat Transfor			

Heat Transfer Efficiency

System Protection		

Property	Consideration	Determined by
Human & Environmental impact	Ideally a fluid with a low oral & ecological toxicity should be used	Base Fluid

Physical Hazards

Biodegradability	
Heat Transfer Efficiency	
System Protection	

Property	Consideration	Determined by
Human & Environmental impact	Ideally a fluid with a low oral & ecological toxicity should be used	Base Fluid
Physical Hazards	Flammability – Safest to use a fluid with a high flash point	Base Fluid
Biodegradability		
Heat Transfer Efficiency		

System Protection			

Property	Consideration	Determined by
Human & Environmental impact	Ideally a fluid with a low oral & ecological toxicity should be used	Base Fluid
Physical Hazards	Flammability – Safest to use a fluid with a high flash point	Base Fluid
Biodegradability	In the event of a leak the fluid should not persist in the environment	Base Fluid & Additives
Heat Transfer Efficiency		
System Protection		

Property	Consideration	Determined by
Human & Environmental impact	Ideally a fluid with a low oral & ecological toxicity should be used	Base Fluid
Physical Hazards	Flammability – Safest to use a fluid with a high flash point	Base Fluid
Biodegradability	In the event of a leak the fluid should not persist in the environment	Base Fluid & Additives
Heat Transfer Efficiency	The fluid should have favourable thermo-physical properties Hydraulic & Heat Transfer Considerations	Base Fluid & Additives
System Protection		

Property	Consideration	Determined by
Human & Environmental impact	Ideally a fluid with a low oral & ecological toxicity should be used	Base Fluid
Physical Hazards	Flammability – Safest to use a fluid with a high flash point	Base Fluid
Biodegradability	In the event of a leak the fluid should not persist in the environment	Base Fluid & Additives
Heat Transfer Efficiency	The fluid should have favourable thermo-physical properties Hydraulic & Heat Transfer Considerations	Base Fluid & Additives
System Protection	The fluid should prevent freezing, corrosion,	Base Fluid &
FIDIECTION	biological louling & scaling	Additives
		1. Ale tot

Base Fluid:	Mono Ethylene Glycol (MEG)	Bio-1,3- Propylene Glycol (1,3-MPG)	Mono Propylene Glycol (1,2-MPG)
Human & Environmental Considerations	Toxic to mammals Moderate aquatic toxicity	Non-toxic to mammals Moderate aquatic toxicity	Non-toxic to mammals Higher aquatic toxicity
Physical Hazards		Low risk	
Biodegradability		High	
Hydraulic Efficiency Heat Transfer Efficiency	Decr	easing Efficienc	y

Base Fluid:	Mono Ethylene Glycol (MEG)	Bio-1,3- Propylene Glycol (1,3-MPG)	Mono Propylene Glycol (1,2-MPG)
Human & Environmental Considerations	Toxic to mammals Moderate aquatic toxicity	Non-toxic to mammals Moderate aquatic toxicity	Non-toxic to mammals Higher aquatic toxicity
Physical Hazards	Low risk		
Biodegradability		High	
Hydraulic Efficiency	Decr	easing Efficiency	
Heat Transfer Efficiency	Deci		

Base Fluid:	Mono Ethylene Glycol (MEG)	Bio-1,3- Propylene Glycol (1,3-MPG)	Mono Propylene Glycol (1,2-MPG)
Human & Environmental Considerations	Toxic to mammals Moderate aquatic toxicity	Non-toxic to mammals Moderate aquatic toxicity	Non-toxic to mammals Higher aquatic toxicity
Physical Hazards	Low risk		
Biodegradability	High		
Hydraulic Efficiency Heat Transfer Efficiency	Decr	easing Efficienc	y

Base Fluid:	Mono Ethylene Glycol (MEG)	Bio-1,3- Propylene Glycol (1,3-MPG)	Mono Propylene Glycol (1,2-MPG)
Human & Environmental Considerations	Toxic to mammals Moderate aquatic toxicity	Non-toxic to mammals Moderate aquatic toxicity	Non-toxic to mammals Higher aquatic toxicity
Physical Hazards	Low risk		
Biodegradability	High		
Hydraulic Efficiency	Decreasing Efficiency		
Heat Transfer Efficiency	Deci		y
			Killiost

Base Fluid:	Mono Ethylene Glycol (MEG)	Bio-1,3- Propylene Glycol (1,3-MPG)	Mono Propylene Glycol (1,2-MPG)
Human & Environmental Considerations	Toxic to mammals Moderate aquatic toxicity	Non-toxic to mammals Moderate aquatic toxicity	Non-toxic to mammals Higher aquatic toxicity
Physical Hazards	Low risk		
Biodegradability	High		
Hydraulic Efficiency Heat Transfer Efficiency	Decr	easing Efficienc	y

Facts about MEG & MPG

	Mono Ethylene Glycol (MEG) C ₂ H ₆ O ₂	Mono Propylene Glycol (MPG) C ₃ H ₈ O ₂
Mammalian Toxicity	MEG is toxic to mammals	MPG is of very low toxicity to mammals
Oral LD50 (mg/kg)	~4700	~20,000
Biodegradability	Very High Does not persist in the environment	Very High Does not persist in the environment
COD (mg/l)	~ 1.29 x 10 ⁶	~ 1.56 x10 ⁶
BOD ₅ (mg/l)	~ 0.7x10 ⁶	~ 1.36x10 ⁶
Aquatic Toxicity EC50 Water Flea (mg/l)	~ 74,000	~ 10,000
German Water Hazard Classification	WGK1 (Slightly hazardous to water)	WGK1 (Slightly hazardous to water)

Fluid viscosity & Heat transfer coefficients

Base Fluid:	Mono Ethylene Glycol	Bio-1,3-Propylene Glycol	Mono Propylene Glycol
Hydraulic Efficiency	Decreasing Efficiency		
Heat Transfer Efficiency			
$Re = \frac{\rho VD}{\mu}$	V = Fluid velocity D = Hydraulic Diameter ρ = Fluid Density μ = Fluid Dynamic Visco Cp = Fluid Heat Capaci k = Fluid Thermal Cond	of Pipe osity ty uctivity	$r = \mu c_{\rho} / k$

The Reynolds number (Re) describes the type of flow achieved (Laminar or Turbulent)? Will you achieve acceptable pressure drops?

The **Prandtl Number (Pr**) gives an indication of the heat transfer capabilities of the fluid **Thermal fluid viscosity is a key factor in both**

Viscosity of glycol based thermal fluids

Consider 3 glycol based thermal fluids @ -15 ° C freeze protection

MEG base fluids have a significantly lower viscosity than MPG based fluids

You should not install an MPG based fluid in a system designed for MEG

Are all glycol based thermal fluids the same?

There are many glycol based thermal fluids on the market

- What are the important differences?
- What should you look for?
- What should you ask?
- What is at stake for you?

How good is the corrosion protection?

Does the product conform to a corrosion test standard?

ASTM D1384-05 Test Method

- Test coupons immersed in glycol based fluid diluted with corrosive water at 88 ° C
- Compressed air passed through system for 14 days
- Test promotes corrosion
- Limits on permissible mass loss for a range of metals
- Very difficult test to pass
- Widely used in Europe
- Good indication of the level of corrosion protection

How good is the corrosion protection?

Does the fluid you are using meet a corrosion test standard?

What's happening within your installation?

- 1. What is a Thermal Fluid
- 2. Choosing a Thermal Fluid
- 3. Handling, Installing & Monitoring (Best Practice)

Best Practice

Fluid Selection

Protection Meeting industry standards

Base Fluid Selection Assessment of the risks Maximising efficiency

Installation

Preventing Fouling Cleaning & Sanitising

Minimising Risk Water quality considerations Using the right dilution & freeze protection **After Care**

Don't forget the fluid! Regular health checks

Remedial actions

Consult with fluid manufacturers who can offer solutions to problems

Installing a glycol based thermal fluid

- During installation soil will enter the system
- Many systems are left stagnant with water over extended periods of time
- Soil contains biological contaminants
- Biological contaminants proliferate rapidly
- Serious biological fouling can occur
- Leads to loss of efficiency, downtime, repairs and replacements

Cleaning & Sanitising

Kilfrost recommends a simple two step process for best practice installation

Ready to use & concentrates

Both ready mixed & concentrate formulations are available

	Ready to use	Concentrate
	Ready to install	Lower volume required
Advantages	No errors with dilution	Lower transport costs
	Prepared using high quality water	Practical
	Improved corrosion & scaling resistance	
Disadvantages	Larger volumes & transport costs	Errors on mixing can occur
J. J		Water quality considerations

Post installation care

Basic Onsite Tests

Product concentration – Refractometer

Freeze protection - Refractometer

pH – pH Meter

Bio fouling – Dip Slides

Visual inspection – Glass sample jar

Laboratory Tests

Corrosion Protection

Compatibility Tests

Contamination checks

Base fluid identification

Best Practice

Fluid Selection

Protection Meeting industry standards

Base Fluid Selection Assessment of the risks Maximising efficiency

Installation

Preventing Fouling Cleaning & Sanitising

Minimising Risk Water quality considerations Using the right dilution & freeze protection **After Care**

Don't forget the fluid! Regular health checks

Remedial actions

Consult with fluid manufacturers who can offer solutions to problems

Best Practice

Thermal Fluid Selection

- Hydraulic efficiency
- Heat transfer
 efficiency
- Choosing a quality
 product
- System protection meeting test standards

Installation & Aftercare

- Cleaning & Sanitising
- Water quality considerations
- Correct freeze protection
- Monitoring remedial action is better than replacement

Ensuring System Efficiency & Longevity

Thanks for your attention

Any Questions?

