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‘City-scale geothermal simulation tool’

LONDON

« Examine the geothermal energy potential at city scale
« Q= (nCw + (1-n)Cs)VAT,
* Q (kJ) is the total heat potential content of the thermal reservoir,
* Vs the volume of the reservoir, n is porosity,
« Cw and Cs (kd m-3 K-1) are the volumetric heat capacity of water
and solid,
* AT is the temperature reduction or increase of the whole reservoir.

« If the magnitude of temperature reduction/increase is set as AT =
10°C, the heat potential of the London clay strata at depth = 30 m is
approximately 5.52x10'° kJ per sq. km area



 The annual gas consumption for space and water
heating is roughly 5.5 x 101°KJ per sq. km of all land
area in London (UK annual energy statistics, DECC,
2008).

* This is equivalent to the heat capacity of the London
clay strata evaluated earlier (5.52x10%° kJ per sqg. km
area)

* Total energy consumption due to space cooling in
London was in the order of 5.7 x 10*% KJ per sg. km
(Day et al, 2009) and is expected to double by 2030.
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The Relationship between the Model Components

Building Demand Model Q Auxiliary Systems Model
(TRNSYS)

R =
| N R

Temperature, Wind,
Solar Radiation

—

Heating / Cooling Heating / Cooling
Demand kWh(t)
kWh(t)

Distribution System Model

Ground Thermal Ground
Recharge Temperature

T(t), Flow(t) Change
T(t), Flow(t)

Ground Heat Exchanger Model

(TRNSYS)




Dean Street Station Box

Ground Heat Exchangers in
Foundation Walls (Diaphragm Walls)
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Dean Street Station Box - Model Mesh
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Dean Street Station Box - First Modelling Attempts
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Implementation and validation of a

ground source heat pump (GS

IP)

system model in a TRNSYS energy
simulation environment - case study
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Case Study - Oxford University Earth Science Department,

1
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The System

Cooling Low Temperature Heating High

Temperature
Heating and
Hot Water

Electrical T

Chiller

Low High
Temperature Temperature

T Gas Boiler Gas Boiler

Heat Pump: 3 x 130 kW

A

GHE: 63 x 65 m Boreholes

The hourly demand schedule was generated using IES Virtual Environment
Energy Modelling Software.

The total annual estimated design heating demand was 1850 MW and cooling
demand was 600 MW.
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Monitored Data - Heat Pump Electricity Consumption

Weekly Heat Pump Power Demand (MWhr)
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Monitored Data - GHE Return/Outlet Temperatures
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Monitored Data - Heating Demand
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Monitored Data - Cooling Demand
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Total Load
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Design Case

GSHP

Total Load

Actual Case

GSHP
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Remarks

e The current case study is not the only case in the UK where actual
loads deviated from design values
» Keble College, University of Oxford
* Architecture Studio Building, University of Cambridge

e Actual building heating/cooling demands are unpredictable

e Because the GSHP is designed for a specific net energy
extraction/rejection rate into the soil, GSHPs are more sensitive to

change in loads then conventional fossil fuel HVAC systems

e The uncertainty in the design loads should be taken in account when

designing full-size GHSP systems
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Scenario 1 - No Auxiliary System (Design Loads)

additional 130-140 .
Current boreholes (65m deep) Scenario 1
are required in order to
meet the increased

demand
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Scenario 1 - GHE 30 Year Min/Max Return/Outlet Temp.

GHE Return Flow Temperature (C°)
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The Question

e Can we over-size the GHE during design in order
to reduce the risk of system under performance
(1.e. provide a safety factor) while still keeping
the installation and operational costs below

those of other HVAC systems?

* And if so up to which safety factor?
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Load Change Factor (LCF)

e For GSHP design we are concerned with a LCF which will increase

or decrease the TOTAL loads over the lifetime

Lets assume that this LCF has the following triangular probability

distribution:

Probability

Min. Decrease No Change (LCF =1) Max. Increase

Load Change Factor (LCF)
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Overall Load Factor (OLCF)

e The LCF can be different for the cooling and the heating loads:
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Uncertainties

Case)

Cooling/Heating Load
Increase Factor

£/kW Gas 0.032 0.041 0.05
£/kW Electricity 0.1190 0.1345 0.1500
Borehole Installation 25.0 37.5 50.0
Cost (£/m)
Boiler Efficiency 0.94 0.96 0.98
Chiller Efficiency 3.5 4.0 4.5
Gas (kg CO,/kW) 0.185 0.194 0.203
Electricity (kg CO,/kW) 0.40 0.42 0.55
Air Source Cooling COP 3.0 3.9 4.5
Air Source Heating COP 3.0 4.0 4.9
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Installation of additional GSHP boreholes with safety factor

* Increased cost for the installation of GSHP compared to alternative

technologies
- More cost with higher SF (i.e. longer borehole lengths)

« Compared to alternative technologies, savings made after 30 years by an

actual demand (which is variable). (Operational Savings)
* Relative Benefit = Operational savings — GSHP Installation Cost
-+ Case A — Savings > GSHP Installation — Good investment
- Case B - Savings ~ GSHP Installation
- Case C — Savings < GSHP Installation — Not good investment

« Case D — Actual demand > Design Load x SF — System failure
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Results (for the Oxford
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Full GSHP versus Current GSHP+Boiler&Chiller
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Life cycle savings by Full GSHP to Current system
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Life cycle savings by Full GSHP to full gas boiler& chiller
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Main conclusions (for the Oxford Building case)

 When GSHP performance is compared to the hybrid system
the positive risk outweighs the negative one up to an SF of 2.4

 When comparing to a conventional gas-fired boiler and
electrical chiller system, the saving largely outweighs risk up
to an FS of 2.1. This suggests that even if the GSHP
Incorporates a redundancy of up to twice the design loads it is
still more likely to yield savings over its lifetime

e A full-size GSHP with auxiliary back is potentially the most
cost efficient configuration (ASHP might provide larger
savings but at the same time there is a higher performance

B UNIVERSITY OF
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Uncertainties

Case)

Cooling/Heating Load
Increase Factor

£/kW Gas 0.032 0.041 0.05
£/kW Electricity 0.1190 0.1345 0.1500
Borehole Installation 25.0 37.5 50.0
Cost (£/m)
Boiler Efficiency 0.94 0.96 0.98
Chiller Efficiency 3.5 4.0 4.5
Gas (kg CO,/kW) 0.185 0.194 0.203
Electricity (kg CO,/kW) 0.40 0.42 0.55
Air Source Cooling COP 3.0 3.9 4.5
Air Source Heating COP 3.0 4.0 4.9
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