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Pile Thermal Resistance
• Temperature change across concrete usually captured using 

a (steady state) resistance term

• Empirical database of experience is absent

• Rpconv & Rpcond relatively “easy” to calculate

• Rc is often largest part of resistance due to volume of 
concrete

• Depends on pipe arrangements and thermal conductivity of 
concrete

cpcondpconvb RRRR 



Time to Approach Steady State
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Time to Approach Steady State
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Time for a 
transient 
approach?



Piles with Centrally Placed Pipes
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Piles with Pipes near the Edge
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Example: Steady State vs Transient

• Assumptions:

– Transient G function for ground temperature changes

– Transient G function for pile concrete (as % of steady Rc)

– Steady state heat transfer within and across pipes

– 600mm dia pile, 20m long (AR=33.3); 4 pipes near the 
edge

• c=1W/mK; g=2W/mK; g=1E-6m2/s

• Rc=0.075mK/W; Rp=0.025mK/W

g
g

ccpf GqGqRqRT
2





Thermal Pile G-function
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Thermal Pile G-function
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Pile Concrete G-function
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Thermal Loads
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Thermal Loads: Daily Variation
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Results: Components



Results: Totals



Results: Totals



Results: Totals





Real Thermal Loads



Numerical Model
(2D ABAQUS)



Results: Temperatures

c=g=3W/mK



Results: Heat Flux



Siemens USC Site Data

Central thermistors



Siemens USC Site Data

Thermistors on pile cage



Consequences
• Importance of concrete for storage not just transfer of heat

• Thermal buffering, preventing extreme temperatures 
reaching the ground

– Effect greatest when c lower than g

– Impact on geotechnical design

• More important to determine concrete thermal properties 
(not just Rb)

• Concrete properties has greatest impact in largest diameter 
piles as furthest from steady state



Concrete Thermal Properties
• Thermal conductivity: 1.2 

to 4W/mK

• Volumetric heat 
capacity:2 to 3 MJ/m3K

• Depends on:

– Moisture content
– Aggregate type and 

ratio
– Additives, cement 

replacement products
• Is rapid heat transfer 

desirable?
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Conclusions
• Under constant q piles may take days to approach steady 

state. 
– Caution with thermal response tests

• Pile concrete is rarely at a thermal steady state during 
thermal pile operation

• Pile is being used as an energy store

• Pile is protected the ground against extreme temperatures

• Need more emphasis on determining pile properties

• Treating the pile as transient during design will improve 
thermal efficiency
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